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ABSTRACT
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tive function evaluations such as complex simulations that take from minutes to hours
to run. However, PPS, which was originally designed for execution on homogeneous
and tightly-coupled parallel machine, is not well suited to the more heterogenous,
loosely-coupled, and even fault-prone parallel systems available today. Specifically,
PPS is hindered by synchronization penalties and cannot recover in the event of a
failure. We introduce a new asynchronous and fault tolerant parallel pattern search
(APPS) method and demonstrate its effectiveness on both simple test problems as
well as some engineering optimization problems.
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1 Introduction

We are interested in solving the unconstrained nonlinear optimization problem:
minimize f(x),

where x € R" and f: R" — R.

We introduce a family of asynchronous parallel pattern search (APPS) methods.
Pattern search [15] is a class of direct search methods which admits a wide range of
algorithmic possibilities. Because of the flexibility afforded by the definition of pattern
search [23, 16], we can adapt it to the design of nonlinear optimization methods
that are intended to be effective on a variety of parallel and distributed computing
platforms.

Our motivations are several. First, the optimization problems of interest to us
are typically defined by computationally expensive computer simulations of complex
physical processes. Such a simulation may take anywhere from a few seconds to many
hours of computation on a single processor. As we discuss further in §2, the dominant
computational cost for pattern search methods lies in these objective function evalu-
ations. Even when the objective function is inexpensive to compute, the relative cost
of the additional work required within a single iteration of pattern search is negligible.

Given these considerations, one feature of pattern search we exploit is that it
can compute multiple, independent function evaluations simultaneously in an effort
both to accelerate the search process and to improve the quality of the result ob-
tained. Thus, our approach can take advantage of parallel and distributed computing
platforms.

We also have a practical reason, independent of the computational environment,
for using pattern search methods for the problems of interest. Simply put, for prob-
lems defined by expensive computer simulations of complex physical processes, we
often cannot rely on the gradient of f to conduct the search. Typically, this is be-
cause no procedure exists for the evaluation of the gradient and the creation of such a
procedure has been deemed untenable. Further, approximations to the gradient may
prove unreliable. For instance, if the accuracy of the function can only be trusted
to a few significant decimal digits, it is difficult to construct reliable finite-difference
approximations to the gradient. Finally, while the theory for pattern search as-
sumes that f is continuously differentiable, pattern search methods can be effective
on nondifferentiable (and even discontinuous) problems precisely because they do not
explicitly rely on derivative information to drive the search. Thus we focus on pattern
search for both practical and computational reasons.

However, both the nature of the problems of interest and the features of the current
distributed computing environments raise a second issue we address in this work. The
original investigation into parallel pattern search (PPS) methods' [7, 22] made two

!The original investigations focused on parallel direct search (PDS), a precursor to the more
general PPS methods discussed here.



fundamental assumptions about the parallel computation environment: 1) that the
processors were both homogeneous and tightly coupled and 2) that the amount of
time needed to complete a single evaluation of the objective was effectively constant.
It is time to reexamine these two assumptions.

Clearly, given the current variety of computing platforms including distributed
systems comprising loosely-coupled, often heterogeneous, commercial off-the-shelf
components [21], the first assumption is no longer valid. The second assumption
is equally suspect. The standard test problems used to assess the effectiveness of a
nonlinear optimization algorithm typically are closed-form, algebraic expressions of
some function. Thus, the standard assumption that, for a fixed choice of n, evalu-
ations complete in constant time is valid. However, given our interest in optimizing
problems defined by the simulations of complex physical processes, which often use
iterative numerical techniques themselves, the assumption that evaluations complete
in constant computational time often does not hold. In fact, the behavior of the
simulation for any given input is difficult to assess in advance since the behavior of
the simulation can vary substantially depending on a variety of factors.

For both the problems and computing environments of interest, we can no longer
assume that the computation proceeds in lockstep. A single synchronization step
at the end of every iteration, such as the global reduction used in [22], is neither
appropriate nor effective when any of the following factors holds: function evaluations
complete in varying amounts of time (even on equivalent processors), the processors
employed in the computation possess different performance characteristics, or the
processors have varying loads. Again our goal is to introduce a class of APPS methods
that make more effective use of a variety of computing environments, as well as to
devise strategies that accommodate the variation in completion time for function
evaluations. Our approach is outlined in §3.

The third, and final, consideration we address in this paper is incorporating fault
tolerant strategies into the APPS methods since one intent is to use this software on
large-scale heterogeneous systems. The combination of commodity parts and shared
resources raises a growing concern about the reliability of the individual processors
participating in a computation. If we embark on a lengthy computation, we want rea-
sonable assurance of producing a final result, even if a subset of processors fail. Thus,
our goal is to design methods that anticipate such failures and respond to protect the
solution process. Rather than simply checkpointing intermediate computations to
disk and then restarting in the event of a failure, we are instead considering methods
with heuristics that adaptively modify the search strategy. We discuss the technical
issues in further detail in §4.

In §5 we provide numerical results comparing APPS and PPS on both standard
and engineering optimization test problems; and finally, in §6 we outline additional
questions to pursue.

Although we are not the first to embark on the design of asynchronous parallel
optimization algorithms, we are aware of little other work, particularly in the area



of nonlinear programming. Approaches to developing asynchronous parallel Newton
or quasi-Newton methods are proposed in [4, 8], though the assumptions underlying
these approaches differ markedly from those we address. Specifically, both assume
that solving a linear system of equations each iteration is the dominant computational
cost of the optimization algorithm because the dimensions of the problems of interest
are relatively large. A different line of inquiry [20] considers the use of quasi-Newton
methods, but in the context of developing asynchronous stochastic global optimization
algorithms. For now, we focus on finding local minimizers.

2 Parallel Pattern Search

Before proceeding to a discussion of our APPS methods, let us first review the features
of direct search, in general, and pattern search, in particular.

Direct search methods are characterized by neither requiring nor explicitly approx-
imating derivative information. In the engineering literature, direct search methods
are often called zero-order methods, as opposed to first-order methods (such as the
method of steepest descent) or second-order methods (such as Newton’s method) to
indicate the highest order term being used in the local Taylor series approximation
to f. This characterization of direct search is perhaps the most useful in that it
emphasizes that in higher-order methods, derivatives are used to form a local approx-
imation to the function, which is then used to derive a search direction and predict
the length of the step necessary to realize decrease. Instead of working with a local
approximation of f, direct search methods work directly with f.

Pattern search methods comprise a subset of direct search methods. While there
are rigorous formal definitions of pattern search [16, 23|, a primary characteristic of
pattern search methods is that they sample the function over a predefined pattern of
points, all of which lie on a rational lattice. By enforcing structure on the form of
the points in the pattern, as well as simple rules on both the outcome of the search
and the subsequent updates, standard global convergence results can be obtained.

For our purposes, the feature of pattern search that is amenable to parallelism
is that once the candidates in the pattern have been defined, the function values at
these points can be computed independently and, thus, concurrently.

To make this more concrete, consider the following particularly simple version of
a pattern search algorithm. At iteration k£, we have an iterate x; € R" and a step-
length parameter A, > 0. The pattern of p points is denoted by D = {d;,...,d,}.
For the purposes of our simple example, we choose D = {es,...,€n, —€1,...,—€,}
where e; represents the jth unit vector. As we discuss at the end of this section, other
choices for D are possible. We now have several algorithmic options open to us. One
possibility is to look successively at the pattern points zx + Agd;, ¢ € {1,...,2n} until
either we find a point z, for which f(z,) < f(xx) or we exhaust all 2n possibilities.
At the other extreme, we could determine z, € {zy + Agd;,i = 1,...,2n} such that
f(zy) = min{ f(xp+Axd;),i = 1,...,2n} (which requires us to compute f(zy+ Agd;)
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for all 2n vectors in the set D). Fig. 1 illustrates the pattern of points among which
we search for z, when n = 2.

Ay

Tk

[o]

Figure 1: A simple instance of pattern search

In either variant of pattern search, if none of the pattern points reduces the ob-
jective, then we set z;,1 = x; and reduce A by setting Ay 1 = %A,ﬁ; otherwise, we
set Agyr1 = Ag and update zx; = .. We repeat this process until some suitable
stopping criterion, such as Ay < tol, is satisfied.

There are several things to note about the two search strategies we have just
outlined. First, even though we have the same pattern in both instances, we have two
different algorithms with different search strategies that could conceivably produce
different sequences of iterates and even different local minimums. Second, the design
of the search strategies reflects some intrinsic assumptions about the nature of both
the function and the computing environment in which the search is to be executed.
Clearly the first strategy, which evaluates only one function value at a time, was
conceived for execution on a single processor. Further it is a cautious strategy that
computes function values only as needed, which suggests a frugality with respect to
the number of function evaluations to be allowed. The second strategy could certainly
be executed on a single processor, and one could make an argument as to why there
could be algorithmic advantages in doing so, but it is also clearly a strategy that can
easily make use of multiple processors. It is straightforward to then derive PPS from
this second strategy, as illustrated in Fig. 2.

Before proceeding to a description of APPS, however, we need to make one more
remark about the pattern. As we have already seen, we can easily derive two different
search strategies using the same basic pattern. Our requirements on the outcome of
the search are mild. If we fail to find a point that reduces the value of f at zy,
then we must try again with a smaller value of A;. Otherwise, we accept as our new
iterate any point from the pattern that produces decrease. In the latter case, we may
choose to modify A,. In either case, we are free to make changes to the pattern to
be used in the next iteration, though we left the pattern unchanged in the examples
given above. However, changes to either the step length parameter or the pattern are
subject to certain algebraic conditions, outlined fully in [16].

2The reduction parameter is usually % but can be any number in the set (0,1).
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Initialization:

e Select a pattern D = {dy,...,dp}.

e Select a step-length parameter A,.

e Select a stopping tolerance tol.

e Select a starting point z and evaluate f(zo).
Iteration:

1. Evaluate f(xy + Agd;), for i =1,...,p, concurrently.

2. Determine z such that f(z;) = min { f(zx + Axd;), i=1,...,p}
(synchronization point).

3. If f(zy) < f(xg), then set xx11 = x4 and Ay = Ag.
Else set xx11 = xp and Ag 1 = %Ak.

4. If Apyq < tol, exit. Else, k < k + 1 and repeat.

Figure 2: The PPS Algorithm

There still remains the question of what constitutes an acceptable pattern. We
borrow the following technical definition from [6, 16]: a pattern must be a positive
spanning set for R™. In addition, we add the condition that the spanning set be
composed of rational vectors.

Definition 1 A set of vectors {d,...,d,} positively spans R™ if any vector z € R"
can be written as a nonnegative linear combination of the vectors in the set; i.e., for
any z € R" there erists oy, g, ..., 0p > 0 such that

z = aidy + -+ opd,.

A positive spanning set contains at least n+1 vectors [6]. It is trivial to verify that the
set, of vectors {e;, es, —e1, —ea} (used to define the pattern for our examples above)
is a positive spanning set.?

4
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negative” spanning set.



3 Asynchronous Parallel Pattern Search

Inefficiencies in processor utilization for the PPS algorithm shown in Fig. 2 arise
when the objective function evaluations do not complete in approximately the same
amount of time. This can happen for several reasons. First, the objective function
evaluations may be complex simulations that require different amounts of work de-
pending on the input parameters. Second, the load on the individual processors may
vary. Last, groups of processors participating in the calculation may possess different
computational characteristics. When the objective function evaluations take varying
amounts of time those processors that can complete their share of the computation
more quickly wait for the remaining processors to contribute their results. Thus,
adding more processors (and correspondingly more search directions) can actually
slow down the PPS method given in Fig. 2 because of an increased synchronization
penalty.

The limiting case of a slow objective function evaluation is when one never com-
pletes. This could happen if some processor fails during the course of the calculations.
In that situation, the entire program would hang at the next synchronization point.
Designing an algorithm that can handle failures plays some role in the discussion in
this section and is given detailed coverage in the next.

The design of APPS addresses the limitations of slow and failing objective func-
tion evaluations and is based on a peer-to-peer approach rather than master-slave.
Although the master-slave approach has advantages, the critical disadvantage is that,
although recovery for the failure of slave processes is easy, we cannot automatically
recover from failure of the master process.

In the peer-to-peer scenario, all processes have equal knowledge, and each process
is in charge of a single direction in the search pattern D. In order to fully understand
APPS, let us first consider the single processor’s algorithm for synchronous PPS in a
peer-to-peer mode, as shown in Fig. 3. Here subscripts have been dropped to illustrate
how the process handles the data. The set of directions from all the processes forms
a positive spanning set. With the exception of initialization and finalization, the
only communication a process has with its peers is in the global reduction in Step 2.
To terminate, all processors detect convergence at the same time since they all have
identical, albeit independent, values for Ayya.*

In an asynchronous peer-to-peer version of PPS (see Fig. 4), we allow each process
to maintain its own versions of Tpess, T4, Agral, etc. Unlike synchronous PPS,; these
values may not always agree with the values on the other processes. Each process
decides what to do next based only on the current information available to it. If it
finds a point along its search direction that improves upon the best point it knows
so far, then it broadcasts a message to the other processors letting them know. It
also checks for messages from other processors, and replaces its best point with the

“In a heterogeneous environment, there is some danger that the processors may not all have the
same value for A¢ya because of slight differences in arithmetic and the way values are stored; see [2].



Iteration:

1.

Compute Tirjal ¢ Tpest + Ariat d and evaluate fiia = f(@ia1) (where d
is “my” direction).

. Determine f, (and the associated z) via a global reduction

minimizing the fi,, values computed in Step 1.

CIf f—|— < fbesta then {xbesta fbest} — {.’13+, f—|—} Else A1;rial — %Atrial-

. If Agar > tol, go to Step 1. Else, exit.

Figure 3: Peer-to-peer version of (synchronous) PPS

Iteration:

0.

Consider each incoming triplet {z, f1, A} received from another

processor. If f-l— < fbesta then {xbesta fbest; Abest} — {.T_|_, f—l—a A+},
Atrial — Abest-

. Compute Tirial < Toest + Agrial d and evaluate firia = f(Tiria) (where d

is “my” direction).

. Set {zy, fr, Av} < {Zeriar, foriat, Deriar }-

It f+ < fbest: then {xbesta fbesta Abes‘c} — {$+, f+: A—}-}a A‘cria.l — Abes‘c:

and broadcast the new minimum triplet {Zpest, foest, Dbest} t0 all other
processors. Else Ay < %Amal.

. If Agar > tol, goto Step 0. Else broadcast a local convergence message

for the pair {$best, fbest}-

. Wait until either (a) enough of processes have converged for this point

or (b) a better point is received. In case (a), exit. In case (b), goto
Step 0.

Figure 4: Peer-to-peer version of APPS




incoming one if it is an improvement. If neither its own trial point nor any incoming
messages are better, it performs a contraction and continues. Convergence is a trickier
issue than in the synchronous version because the processors do not reach Aa < tol
at the same time. Instead, each processor converges in the direction that it owns, and
then waits for the other processes to either converge to the same point or produce
a better point. Since every good point is broadcast to all the other process, every
process eventually agrees on the best point.

The final APPS algorithm is slightly different from the version in Fig. 4 because we
spawn the objective function evaluation as a separate process. Our motivation is that
we may sometimes want to stop an objective function evaluation before it completes
in the event that a good point is received from another processor. We create a group
of APPS daemon processes that follow the basic APPS procedure outlined in Fig. 4
except that each objective function evaluation will be executed as a separate process.
The result is APPS daemons working in peer-to-peer mode, each owning a single slave
objective function evaluation process.

The APPS daemon (see Fig. 5) works primarily as a message processing center.
It receives three types of messages: a “return” from its spawned objective function
evaluation and “new minimum” and “convergence” messages from APPS daemons.

When the daemon receives a “return” message, it determines if its current trial
point is a new minimum and, if so, broadcasts the point to all other processors.
The Ayia that is used to generate the new minimum is saved and can then be used
to determine how far to step along the search direction. The alternative would be
to reset Ayia = Qg every time a switch is made to a new point, but then scaling
information is lost which may lead to unnecessary additional function evaluations.

In the comparison of the trial and best f-values, we encounter an important caveat
of heterogeneous computing [2]. The comparison of values (f’s, A’s, etc.) controls
the flow of the APPS method, and we depend on these comparisons to give consistent
results across processors. Therefore, we must ensure that values are only compared
to a level of precision available on all processors. In other words, a “safe” comparison

declares ¢ = b if
bl
—_— <€
max{|al, [b|} ~

where €}, 4 1s the maximum of all epaen’s.

A “new minimum” message means that another processor has found a point it
thinks is best, and the receiving daemon must decide if it agrees. In this case, we
must decide how to handle tie-breaking in a consistent manner. If f, = fies, then we
need to be able to say which point is “best” or if indeed the points we are comparing
are equal (i.e., Tpesy = 24 ). The tie breaking scheme is the following. If f, = fies,
then compare A, and Ay and select the larger value of A. If the A values are
also equal, check next to see if indeed the two points are the same, but rather than
comparing Tpess and zy directly by measuring some norm of the difference, use a

unique identifier included with each point. Thus, two points are equal if and only if



e Return from Objective Function Evaluation. Receive fia.

1. Update Zpesy and/or Agyiar-

(a) If ftrial < fbesta then
i- {xbest; fbest; Abest} — {xtrialy ftrial, Atrial}-
ii. Broadcast new minimum message with the triplet
{Zpest, [oests Abest } t0 all other processors

(b) Else if s is not the point used to generate Ty, then
A1;riaul — Abest-

(C) E]SG Atrial — %Atrial-
2. Check for convergence and spawn next objective function
evaluation.
(a) If Agar > tol, compute Tigja <— Thest + Atriard and spawn a
new objective function evaluation.

(b) Else broadcast convergence message with
{Zvest, [oest> Apest } t0 all processors including myself.

e New Minimum Message. Receive the triplet {z, f, A }.

1. If f+ < fbesta then

(a) If Ay > Apesy or I am locally converged, then flag < TRUE,
else flag + FALSE.

(b) Set {-Tbesta fbesta Abest} — {-T—}-a f—l—; A—l—}

(c) If flag is TRUE, then break current objective function
evaluation spawn, compute Tipa ¢ Tpest + Ariar d, and
spawn a new objective function evaluation.

e Convergence Message. Receive the triplet triplet {z,, f1, A }.

1. Go though steps for new minimum to be sure that this point is
Thest-

2. Then, if I am the temporary master consider all the processes
that have so far converged to xpes;- If enough other processes
have converged so that their associated directions form a positive
spanning set, then output the solution, shutdown the remaining
APPS daemon processes, and exit.

Figure 5: APPS Daemon Message Types and Actions




their f-values, A-values, and unique identifiers match.?

In certain cases, the current objective function evaluation is terminated in favor
of starting one based on a new best point. Imagine the following scenario. Suppose
three processes, A, B, and C' start off with the same value for zyes, generate their
OWN ZTyia1’S, and spawn their objective function evaluations. Each objective function
evaluation takes several hours. Process A finishes its objective function evaluation
before any other process and does not find improvement, so it contracts and spawns
a new objective function evaluation. A few minutes later, Process B finishes its
objective function evaluation and finds improvement. It broadcasts its new minimum
to the other processes. Process A receives this message and terminates its current
objective function evaluation process in order to move to the better point. This may
save several hours of wasted computing time. However, Process C, which is still
working on its first objective function evaluation, waits for that to complete before
considering moving to the new Tyt -

When the daemon receives a “convergence” message, it records the converged
direction, and possibly checks for convergence. The design of the method requires
that a daemon cannot locally converge to a point until it has evaluated at least one
trial point generated from that best point along its search direction. Each point has
an associated boolean convergence table which is sent in every message. When a
process locally converges, it adds a TRUE entry to its spot in the convergence table
before it sends a convergence message. In order to actually check for convergence
of a sufficient number of processes, it is useful to have a temporary master to avoid
redundant computation. We define the temporary master to be the process with
the lowest process id. While this is usually process 0, it is not always the case if we
consider faults, which are discussed in the next section. The temporary master checks
to see if the converged directions form a positive spanning set, and if so outputs the
result and terminate the entire computation.

Checking for a positive spanning set is done as follows. Let )V C D be the candidate
for a positive basis. We solve n 4+ 1 nonnegative least squares problems according to
the following theorem.

Theorem 3.1 A set V = {v1,vs,...,0n} IS a positive spanning set if the set £ =
{e1,€9,...,e,,—1} is in its positive span (where —1 is the vector of all —1’s).

Alternatively, we can check the positive basis by first verifying that ) is a spanning
set using, say, a QR factorization with pivoting, and then solving a linear program.

Theorem 3.2 (Wright [24]) A spanning setV = {vy, vy, ..., Uy} is a positive span-
ning set if the mazimum of the following LP is 1.

maxt, s.t. Ve =0, x; >tVi, 0<t < 1.

5This system will miss two points that are equal but generated via different paths.
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In the first case, we can use software for the nonnegative least squares problem
from Netlib due to Lawson and Hanson [14]. In the second case, the software imple-
mentation is more complicated since we need both a QR factorization and a linear
program solver, the latter of which is particularly hard to come by in both a freely
available, portable, and easy-to-use format.

4 Fault Tolerance in APPS

The move toward a variety of computing environments, including heterogeneous dis-
tributed computing platforms, brings with it an increased concern for fault tolerance
in parallel algorithms. The large size, diversity of components, and complex archi-
tecture of such systems create numerous opportunities for hardware failures. Our
computational experience confirms that it is reasonable to expect frequent failures.
In addition, the size and complexity of current simulation codes call into question
the robustness of the function evaluations. In fact, application developers themselves
will testify that it is possible to generate input parameters for which their simulation
codes fail to complete successfully. Thus, we must contend with software failures as
well as hardware failures.

A great deal of work has been done in the computer science community with
regard to fault tolerance; however, much of that work has focused on making fault
tolerance as transparent to the user as possible. This often entails checkpointing the
entire state of an application to disk or replicating processes. Fault tolerance has
traditionally been used with loosely-coupled distributed applications that do not de-
pend on each other to complete, such as business database applications. This lack
of interdependence is atypical of most scientific applications. While checkpointing
and replication are adequate techniques for scientific applications, they incur a sub-
stantial amount of unwanted overhead; however, certain scientific applications have
characteristics that can be exploited for more efficient and elegant fault tolerance.
This algorithm-dependent variety of fault tolerance has already received a consider-
able amount of attention in the scientific computing community; see, e.g., [11, 12].
These approaches rely primarily on the use of diskless checkpointing, a significant
improvement over traditional approaches. The nature of APPS is such that we can
even further reduce the overhead for fault tolerance and dispense with checkpointing
altogether.

There are three scenarios that we consider when addressing fault tolerance in
APPS: 1) the failure of a function evaluation, 2) the failure of an APPS daemon, and
3) the failure of a host. These scenarios are shown in Figure 6. The approaches for
handling daemon and host failures are very similar to one another, but the function
evaluation failure is treated in a somewhat different manner. When a function eval-
uation fails, it is respawned by its parent APPS daemon. If the failure occurs more

11



than a specified number of times at the same trial point, then the daemon itself fails.
If an APPS daemon fails, the first thing the temporary master does is check for con-
vergence since the now defunct daemon may have been in the process of that check
when it died. Next it checks whether or not the directions owned by the remaining
daemons form a positive basis. If so, convergence is still guaranteed, so nothing is
done. Otherwise, all dead daemons are restarted. If a host fails, then the APPS
daemons that were running on that host are restarted on a different host according
to the rules stated for daemon failures. The faulty host is then removed from the list
of viable hosts and is no longer used.

e Exit from Function Evaluation.
1. If the number of tries at this point is less than the maximum
allowed number, respawn the function evaluation.

2. Else shutdown this daemon.
e An APPS Daemon Failed.

1. Record failure.
2. If T am the (temporary) master, then

(a) Check for convergence and, if converged, output the result
and terminate the computation.

(b) If the directions corresponding to the remaining daemons do
not form positive spanning set, respawn all failed daemons.

e A Host Failed.

1. Remove host from list of available hosts.

Figure 6: Fault Tolerance Messages and Actions

Two important points should be made regarding fault tolerance in APPS. First,
there are no single points of failure in the APPS algorithm itself. While there are
scenarios requiring a master to coordinate efforts, this master is not fixed If it should
fail while performing its tasks, another master steps up to take over. This means the
degree of fault tolerance in APPS is constrained only by the underlying communi-
cation architecture. The current implementation of APPS uses PVM, which has a
single point of failure at the master PVM daemon [9]. We expect Harness [1], the
successor to PVM, to eliminate this disadvantage. The second point of interest is that

6This situation can be handled in different ways for different applications; attempts to evaluate
a certain point could be abandoned without terminating the daemon.
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no checkpointing or replication of processes is necessary. The algorithm reconfigures
on the fly, and new APPS daemons require only a small packet of information from
an existing process in order to take over where a failed daemon left off. Therefore,
we have been able take advantage of characteristics of APPS in order to elegantly
incorporate a high degree of fault tolerance with very little overhead.

Despite the growing concern for fault tolerance in the parallel computing world, we
are aware of only one other parallel optimization algorithm that incorporates fault
tolerance, FATCOP [3]. FATCOP is a parallel mixed integer program solver that
has been implemented using a Condor-PVM hybrid as the communication substrate.
FATCOP is implemented in a master-slave fashion which means that there is a sin-
gle point of failure at the master process. This is addressed by having the master
checkpoint information to disk (via Condor), but recovery requires user intervention
to restart the program in the event of a failure. In contrast, APPS can recover from
the failure of any type of process, including the failure of a temporary master, on its
own and has no checkpointing whatsoever.

5 Numerical Results

We compare PPS” and APPS on several test problems as well as two engineering
problems, a thermal design problem and a circuit simulation problem.

The tests were performed on the CPlant supercomputer at Sandia National Labs in
Livermore, California. CPlant is a cluster of DEC Alpha Miata 433 MHz Processors.
For our tests, we used 50 nodes dedicated to our sole use.

5.1 Standard Test Problems

We compare APPS and PPS with 8, 16, 24,and 32 processors on six four dimensional
test problems: broyden2a, broyden2b, chebyquad, epowell, toint_trig, and vardim [18,
5]. Since the function evaluations are extremely fast, we added extra “busy work” in
order to slow them down to better simulate the types of objective functions we are
interested in.®

The parameters for APPS and PPS were set as follows. Let n = 4 be the problem
dimension, and let p be the number of processors. The first 2n search directions are
{e1,€9,..., €y, —€1,—€9,...,—€n}. The remaining p — 2n directions are vectors that
are randomly generated (with a different seed for every run) and normalized to unit
length. This set of search directions is a positive spanning set. We initialize A = 1.0
and tol = 0.001.

"We are using our own implementation of a positive basis PPS, as outlined in Fig. 3, rather than
the well-known parallel direct search (PDS) [22]. PDS is not based on the positive basis framework
and is quite different from the method described in Fig. 3, making comparisons difficult.

8More precisely, the “busy work” was the solution of a 100 x 101 nonnegative least squares
problem.
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We added two additional twists to the way A is updated for all tests. First, if the
same search direction yields the best point two times in a row, A is doubled before
the broadcast. Second, the smallest allowable A for a “new minimum” is such that
at least three contractions will be required before local convergence. That way, we
are guaranteed to have several evaluations along each search direction for each point.

Method | Process | Function | Function | Init Idle | Total
ID Evals Breaks | Time | Time | Time

APPS 0 237 66 0.17 0.00 | 24.72
1 266 70 0.02 0.12 | 22.36

2 302 89 0.02 0.12 | 24.32

3 274 77 0.02 0.15 | 22.31

4 270 62 0.02 0.04 | 24.56

5 282 81 0.02 0.04 | 24.58

6 273 59 0.02 0.04 | 24.59

7 276 61 0.02 0.03 | 24.55

Summary 272.5 70.6 0.04 0.07 | 24.72

PPS 0 235 0 0.74 2.55 | 30.63
1 235 0 0.39 7.23 | 30.28

2 235 0 0.25 6.74 | 30.14

3 235 0 0.13 6.94 | 30.01

4 235 0 0.10 6.36 | 29.98

5 235 0 0.07 6.51 | 29.95

6 235 0 0.04 6.23 | 29.92

7 235 0 0.02 6.26 | 29.90

Summary 235 N/A 0.22 | 6.10 | 30.63

Table 1: Detailed results for epowell on eight processors.

Before considering the summary results, we examine detailed results from two sam-
ple runs given in Table 1. Each process reports its own counts and timings. All times
are reported in seconds and are wall clock times. Because APPS is asynchronous,
the number of function evaluations varies for each process, in this case by as much as
25%. Furthermore, APPS sometimes “breaks” functions midway through execution.
On the other hand, every process in PPS executes the same number of function eval-
uations, and there are no breaks. For both APPS and PPS, the initialization time is
longer for the first process since it is in charge of spawning all the remaining tasks.
The idle time varies from task to task but is overall much lower for APPS than PPS.
An APPS process is only idle when it is locally converged, but a PPS process may
potentially have some idle time every iteration while it waits for the completion of the
global reduction. The total wall clock time varies from process to process since each
starts and stops at slightly different times. The summary information is the average
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over all processes except in the case of total time, in which case the maximum over
all times is reported.

Because some of the search directions are generated randomly, every run of PPS
and APPS generates a different path to the solution and possibly different solutions in
the case of multiple minima.® Because of the nondeterministic nature of APPS, it gets
different results every run even when the search directions are identical. Therefore,
for each problem we report average summary results from 25 runs.

Problem | Procs | Function Evals | APPS Idle Time Total Time
Name APPS | PPS | Breaks | APPS | PPS | APPS | PPS
broyden2a 8 40.59 37.00 8.14 0.07 0.95 3.88 4.88
16 41.77 40.12 7.93 0.02 2.04 3.98 6.68

24 38.30 37.36 6.98 0.02 4.68 3.80 9.33

32 36.57 37.92 6.88 0.03 7.81 3.83 | 12.81

broyden2b 8 40.35 37.00 8.28 0.06 0.97 3.84 4.92
16 41.07 39.11 7.38 0.02 2.06 3.95 6.62

24 38.47 39.60 7.20 0.02 4.77 3.77 9.68

32 35.10 36.76 6.23 0.03 7.04 3.72 | 11.92

chebyquad 8 73.06 62.00 16.74 0.05 1.61 6.86 8.11
16 48.33 40.44 9.54 0.02 2.11 4.69 6.92

24 45.67 38.64 9.26 0.02 4.59 4.47 9.39

32 44.34 37.60 9.14 0.04 7.54 4.59 | 12.56

epowell 8 272.29 | 235.00 68.27 0.30 6.64 24.50 | 30.48
16 139.63 | 153.04 37.39 0.05 8.04 12.24 | 24.76

24 139.38 | 126.96 36.40 0.03 | 14.10 12.26 | 28.46

32 98.88 | 102.64 26.20 0.03 | 28.07 9.41 | 41.03

toint_trig 8 53.83 41.00 10.97 0.04 1.11 4.99 5.60
16 51.40 39.12 10.47 0.02 1.97 4.91 6.51

24 47.86 36.88 9.24 0.02 4.43 4.69 9.03

32 45.90 33.04 8.70 0.04 6.41 4.81 |10.83

vardim 8 205.39 77.00 51.24 0.05 2.00 18.15 9.97
16 101.46 80.44 25.58 0.02 3.97 8.93 | 12.83

24 72.44 49.96 17.19 0.02 5.61 6.57 | 11.63

32 64.09 46.04 15.96 0.03 9.58 6.14 | 15.51

Table 2: Results on a collection of four dimensional test problems.

The test results are summarized in Table 2. These tests were run in a fairly
favorable environment for PPS—a cluster of homogeneous, dedicated processors. The

9The exception is PPS with n = 8. Because there are no “extra” search directions, the solution

to the path is the same for every run—only the timings differ.
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primary difficulty for PPS is the cost of synchronization in the global reduction. In
terms of average function evaluations per processor, both APPS and PPS required
about the same number. In general for both APPS and PPS, the number of function
evaluations per processor decreased as the number of processes increased. We expect
the idle time for APPS to be less than that for PPS; and, indeed, the idle time is
two orders of magnitude less. Furthermore, the idle time for PPS increases as the
number of processors goes up. APPS was faster (on average) than PPS in 22 of 24
cases. The total time for APPS either stayed steady or reduced as the number of
processors increased. In contrast, the total PPS time increased as the number of
processors increased due to the synchronization penalty.

Comparing APPS and PPS on simple problems is not necessarily indicative of
results for typical engineering problems. The next two subsections yield more mean-
ingful comparisons, given the types of problems for which pattern search is best
suited.

5.2 TWAFER: A Thermal Design Problem

This engineering application concerns the simulation of a thermal deposition furnace
for silicon wafers. The furnace contains a vertical stack of 50 wafers and several heater
zones. The goal is to achieve a specified constant temperature across each wafer and
throughout the stack. The simulation code, TWAFER, [10], yields measurements at
a discrete collection of points on the wafers. The objective function f is defined by a
least squares fit of the IV discrete wafer temperatures 7; to a prescribed ideal 7T} as
follows

fl@) =3 (Ti(=) = T.)%, (1)

where x; is the unknown power parameters for the heater in zone 2. We consider the
four and seven zone problems.

For this problem, we used the following settings for APPS and PPS. The first n+1
search directions are the points of a regular simplex centered about the origin. The
remaining p — n — 1 points are generated randomly and normalized to unit length.
We set A =10.0 and tol = 0.1.

There are some difficulties from the implementation point of view that are quite
common when dealing with simulation codes. Because TWAFER is a legacy code,
it expects an input file with a specific name and produces an output file with a
specific name. The names of these files cannot be changed, and TWAFER cannot
be hooked directly to PVM. As a consequence, we must write a “wrapper” program
that runs an input filter, executes TWAFER via a system call, and runs an output
filter. The input file for TWAFER must contain an entire description of the furnace
and the wafers. We are only changing a few values within that file, so our input filter
generates the input file for TWAFER by using a “template” input file. This template
file contains tokens that are replaced by our optimization variables. The output file
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from TWAFER contains the heat measurements at discrete points. Our output filter
reads in these values and computes the least squares difference between these and the
ideal temperature in order to determine the value of the objective function.

An additional caveat is that TWAFER must be executed in a uniquely named
subdirectory so that its input and output files are not confused with those of any
other TWAFER process that may be accessing the same disk.

Lastly, because TWAFER  is executed via a system call, APPS has no way of
terminating its execution prematurely. (APPS can terminate the wrapper program,
but TWAFER itself will continue to run, consuming system resources.) Therefore,
we allow all function evaluations to run to completion, that is, we do not allow any
breaks.

Another feature of TWAFER is that it has nonnegativity constraints on the power
settings. We use a simple barrier function that returns a large value (e.g., 10°°) if
x; < 0 for any 1.

Problem | Method | Procs | f(x*) | Function | Idle Total
Evals Time Time

4 Zone APPS 20 0.67 334.6 0.17 395.94
4 Zone PPS 20 0.66 379.9 44.77 503.88
7 Zone APPS 35 3.30 240.4 71.48 | 2260.46
7 Zone PPS 35 2.85 202.2 213.90 | 2306.83

Table 3: Results on the four and seven zone TWAFER problems.

Results for the TWAFER problem are given in Table 3. The four zone results are
the averages over ten runs, and the seven zones results are averages over nine runs.
(The tenth PPS run failed due to a node fault. The tenth APPS run had several faults,
and although it did get the final solution, the summary data was incomplete.) Here we
also list the value of the objective function at the solution. Observe that PPS yields
slightly better function values (compared to the original value of more than 1000)
on average but at a cost of more function evaluations and more time. The average
function evaluation execution time for the four zone problem is 1.3 seconds and for
the seven zone problem is 10.4 seconds; however, the number of function evaluations
includes instances where the bounds were violated in which case the TWAFER code
was not executed and the execution time is essentially zero since we simply return
10%°. Once again PPS has a substantial amount of idle time. The relatively high
APPS idle time in the seven zone problem was due to a single run in which the idle
time was particularly high for some nodes (634 seconds on average).
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5.3 SPICE: A Circuit Simulation Problem

The problem is to match simulation data to experimental data for a particular circuit
in order to determine its characteristics. In our case, we have 17 variables represent-
ing inductances, capacitances, diode saturation currents, transistor gains, leakage
inductances, and transformer core parameters. The objective function is defined as

flz) = Zl (V;SIM(QS) _ V;_EXP)Q’

where N is the number of time steps, V™ (z) is the simulation voltage at time step
j for input z, and V;"*¥ is the experimental voltage at time step j.

The SPICE3 [19] package is used for the simulation. Like TWAFER, SPICE3
communicates via file input and output, and so we again use a wrapper program.

The input filter for SPICE is more complicated than that for TWAFER because
the variables for the problem are on different scales. Since APPS has no mechanism for
scaling, we handled this within the input filter by computing an affine transformation
of the APPS variables. Additionally, all the variables have upper and lower bounds.
Once again, we use a simple barrier function.

The output filter for SPICE is also more complicated than that for TWAFER.
The SPICE output files consists of voltages that are to be matched to the exper-
imental data. The experimental data is two cycles of output voltage measured at
approximately N = 2700 discrete time steps (see Fig. 7). The simulation data con-
tains approximately 10 or more cycles, but only the last few complete cycles are used
because the early cycles are not stable. The cycles must be automatically identified
so that the data can be aligned with the experimental data. Furthermore, the time
steps from the simulation may differ from the time steps in the experiment, and so
the simulation data is interpolated (piecewise constant) to match the experimental
data. The function value at the initial point is 465.

The APPS parameters were set as follows. The search directions were generated
in the same way as those for the test problems. We set A = 1.0 and tolis0.1 (the
tolerance corresponds to a less than 1% change in the circuit parameter). Once
again, we do not allow “breaks” since the function evaluation is called from a wrapper
program via a system call.

The results from APPS and PPS on the SPICE problem are reported in Table 4.
In this case, we are reporting the results of single runs, and we give results for 34 and
50 processors. The average SPICE run time is approximately 20 seconds; however,
we once again do not differentiate between times when the boundary conditions are
violated and when the SPICE code is actually executed. Increasing the number of
processors by 47% results in a 39% reduction in execution time for APPS but only 4%
for PPS. For both 34 and 50 processors, APPS is faster than PPS, and even produces
a slightly better objective value (compared to the starting value of more than 400).
At the solution, two constraints are binding.
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Voltage

_10 - -
_15 - -
_20 - -
-25 | | | | | |
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6
Time X 10—4

Figure 7: Spice results. The solid line represents the experimental output. The dashed
line represents the simulation output after optimization. The dotted line represents
the starting point for the optimization.

Method | Procs | f(xx) | Function | Idle | Total
Evals Time | Time

APPS 34 26.3 57.5 111.92 | 1330.55
APPS 50 26.9 50.6 63.22 | 807.29
PPS 34 28.8 93.0 521.48 | 1712.24
PPS 50 34.9 47.0 905.48 | 1646.53

Table 4: Results for the 17 variable SPICE problem.
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Initial | Final | f(xx) | Total
Procs | Procs Time
34 34 27.8 | 1618.46
50 32 54.2 | 1041.14

Table 5: APPS results for the 17 variable SPICE with a failure approximately every
30 seconds.

Table 5 shows the results of running APPS with faults. In this case, we used a
program that automatically killed one PVM process every 30 seconds. The PVM
processes are the APPS daemons and the wrapper programs. The SPICE3 simula-
tion is executed via a system call, and so continues to execute even if its wrapper
terminates; regardless, the SPICE3 program can no longer communicate with APPS
and is effectively dead.

The results are quite good. In the case of 34 processors, every APPS task that
fails must be restarted in order to maintain a positive basis. So, the final number of
APPS processes is 34. The total time is only increased by 21% despite approximately
50 failures; furthermore, this time is still faster than PPS. In the case of 50 processors,
the final number of processors is 32. (Recall that tasks are only restarted if there are
not enough remaining to form a positive basis.) In the case of 50 processors, the
solution time is only increased by 29%, and is once again still faster than PPS. In this
case, however, the quality of the solution is degraded. This is likely due to the fact
that the solution lies on the boundary and some of the search directions that failed
were needed for convergence (see Lewis and Torczon [17]).

6 Conclusions

The newly-introduced APPS method is superior to PPS in terms of overall comput-
ing time on a homogeneous cluster environment for both generic test problems and
engineering applications. We expect the difference to be even more pronounced for
larger problems (both in terms of execution time and number of variables) and for
heterogenous cluster environments. Unlike PPS, APPS does not have any required
synchronizations and, thus, gains most of its advantage by reducing idle time.

APPS is fault tolerant and, as we see in the results on the SPICE problem for 34
processors, does not suffer much slow-down in the case of faults.

In forthcoming work, Kolda and Torczon [13] will show that in the unconstrained
case the APPS method converges (even in the case of faults) under the same assump-
tions as pattern search [23].

Although the engineering examples used in this work have bound constraints, the
APPS method was not fully designed for this purpose, as evidenced in the poor results
on the SPICE problem with faults on 50 processors. Future work will explore the
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algorithm, implementation, and theory in the constrained cases.

In the implementation described here, the daemons and function evaluations are
in pairs; however, for multi-processor (MPP) compute nodes, this means there will be
several daemon/function evaluation pairs per node. An alternative implementation
of APPS is being developed in which there is exactly one daemon per node regardless
of how many function evaluations are assigned to it. As part of this alternative
implementation, the ability to dynamically add new hosts as they become available
(or to re-add previously failed hosts) will be incorporated.

Another improvement to the implementation will be the addition of a function
value cache in order to avoid reevaluating the same point more than once. The
challenge is deciding when two points are actually equal; this is especially difficult
without knowing the sensitivity of the function to changes in each variable.

The importance of positive bases in the pattern raises several interesting research
questions. First, we might consider the best way to generate the starting basis. We
desire a pattern that maximizes the probability of maintaining a positive basis in
the event of failures. Another research area is the affect that “conditioning” of the
positive basis has on convergence. Our numerical studies have indicated that the
quality of the positive basis may be an issue. Last, supposing that enough failures
have occurred so that there is no longer a positive basis, we may ask if we can easily
determine the fewest number of vectors to add to once again have a positive basis.
Our current implementation simply restarts all failed processes.
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